This file is originally part of Fed-BioMed
SPDX-License-Identifier: Apache-2.0
Send information from node to researcher during the training
Classes
HistoryMonitor
HistoryMonitor(node_id, experiment_id, researcher_id, send)
Send information from node to researcher during the training
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nod_id | Unique ID of this node | required | |
experiment_id | str | TODO | required |
researcher_id | str | TODO | required |
client | TODO | required |
Source code in fedbiomed/node/history_monitor.py
def __init__(self,
node_id: str,
experiment_id: str,
researcher_id: str,
send: Callable):
"""Simple constructor for the class.
Args:
nod_id: Unique ID of this node
experiment_id: TODO
researcher_id: TODO
client: TODO
"""
self._node_id = node_id
self.experiment_id = experiment_id
self.researcher_id = researcher_id
self.send = send
Attributes
experiment_id instance-attribute
experiment_id = experiment_id
researcher_id instance-attribute
researcher_id = researcher_id
send instance-attribute
send = send
Functions
add_scalar
add_scalar(metric, iteration, epoch, total_samples, batch_samples, num_batches, num_samples_trained=None, train=False, test=False, test_on_global_updates=False, test_on_local_updates=False)
Adds a scalar value to the monitor, and sends an 'AddScalarReply' response to researcher.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
metric | Dict[str, Union[int, float]] | recorded value | required |
iteration | int | current epoch iteration. | required |
epoch | int | current epoch | required |
total_samples | int | TODO | required |
batch_samples | int | TODO | required |
num_batches | int | TODO | required |
num_samples_trained | int | TODO | None |
train | bool | TODO | False |
test | bool | TODO | False |
test_on_global_updates | bool | TODO | False |
test_on_local_updates | bool | TODO | False |
Source code in fedbiomed/node/history_monitor.py
def add_scalar(
self,
metric: Dict[str, Union[int, float]],
iteration: int,
epoch: int,
total_samples: int,
batch_samples: int,
num_batches: int,
num_samples_trained: int = None,
train: bool = False,
test: bool = False,
test_on_global_updates: bool = False,
test_on_local_updates: bool = False
) -> None:
"""Adds a scalar value to the monitor, and sends an 'AddScalarReply'
response to researcher.
Args:
metric: recorded value
iteration: current epoch iteration.
epoch: current epoch
total_samples: TODO
batch_samples: TODO
num_batches: TODO
num_samples_trained: TODO
train: TODO
test: TODO
test_on_global_updates: TODO
test_on_local_updates: TODO
"""
self.send(
FeedbackMessage(researcher_id=self.researcher_id,
scalar=Scalar(**{
'node_id': self._node_id,
'experiment_id': self.experiment_id,
'train': train,
'test': test,
'test_on_global_updates': test_on_global_updates,
'test_on_local_updates': test_on_local_updates,
'metric': metric,
'iteration': iteration,
'epoch': epoch,
'num_samples_trained': num_samples_trained,
'total_samples': total_samples,
'batch_samples': batch_samples,
'num_batches': num_batches}
))
)