• Home
  • User Documentation
  • About
  • More
    • Funding
    • News
    • Contributors
    • Users
    • Roadmap
    • Contact Us
  • Home
  • User Documentation
  • About
  • More
    • Funding
    • News
    • Contributors
    • Users
    • Roadmap
    • Contact Us
  • Getting Started
    • What's Fed-BioMed
    • Fedbiomed Architecture
    • Fedbiomed Workflow
    • Installation
    • Basic Example
    • Configuration
  • Tutorials
    • PyTorch
      • PyTorch MNIST Basic Example
      • How to Create Your Custom PyTorch Training Plan
      • PyTorch Used Cars Dataset Example
      • PyTorch aggregation methods in Fed-BioMed
      • Transfer-learning in Fed-BioMed tutorial
    • MONAI
      • Federated 2d image classification with MONAI
      • Federated 2d XRay registration with MONAI
    • Scikit-Learn
      • MNIST classification with Scikit-Learn Classifier (Perceptron)
      • Fed-BioMed to train a federated SGD regressor model
      • Implementing other Scikit Learn models for Federated Learning
    • Optimizers
      • Advanced optimizers in Fed-BioMed
    • FLamby
      • General Concepts
      • FLamby integration in Fed-BioMed
    • Advanced
      • In Depth Experiment Configuration
      • PyTorch model training using a GPU
      • Breakpoints
    • Security
      • Using Differential Privacy with OPACUS on Fed-BioMed
      • Local and Central DP with Fed-BioMed: MONAI 2d image registration
      • Training Process with Training Plan Management
      • Training with Secure Aggregation
      • End-to-end Privacy Preserving Training and Inference on Medical Data
    • Biomedical data
      • Brain Segmentation
  • User Guide
    • Glossary
    • Deployment
      • Introduction
      • VPN Deployment
      • Network matrix
      • Security model
    • Node
      • Configuring Nodes
      • Deploying Datasets
      • Training Plan Management
      • Using GPU
      • Node GUI
    • Researcher
      • Training Plan
      • Training Data
      • Experiment
      • Aggregation
      • Listing Datasets and Selecting Nodes
      • Model Validation on the Node Side
      • Tensorboard
    • Optimization
    • Secure Aggregation
      • Introduction
      • Configuration
      • Managing Secure Aggregation in Researcher
  • Developer
    • API Reference
      • Common
        • Certificate Manager
        • CLI
        • Config
        • Constants
        • Data
        • DB
        • Exceptions
        • IPython
        • Json
        • Logger
        • Message
        • Metrics
        • Model
        • MPC controller
        • Optimizers
        • Privacy
        • Secagg
        • Secagg Manager
        • Serializer
        • Singleton
        • Synchro
        • TasksQueue
        • TrainingPlans
        • TrainingArgs
        • Utils
        • Validator
      • Node
        • CLI
        • CLI Utils
        • Config
        • DatasetManager
        • HistoryMonitor
        • Node
        • NodeStateManager
        • Requests
        • Round
        • Secagg
        • Secagg Manager
        • TrainingPlanSecurityManager
      • Researcher
        • Aggregators
        • CLI
        • Config
        • Datasets
        • Federated Workflows
        • Filetools
        • Jobs
        • Monitor
        • NodeStateAgent
        • Requests
        • Secagg
        • Strategies
      • Transport
        • Client
        • Controller
        • NodeAgent
        • Server
    • Usage and Tools
    • Continuous Integration
    • Definition of Done
    • Development Environment
    • Testing in Fed-BioMed
    • RPC Protocol and Messages
  • FAQ & Troubleshooting
Download Notebook

Federated 2d XRay registration with MONAI¶

Introduction¶

This tutorial shows how to deploy in Fed-BioMed the 2d image registration example provided in the project MONAI (https://monai.io/):

https://github.com/Project-MONAI/tutorials/blob/master/2d_registration/registration_mednist.ipynb

Being MONAI based on PyTorch, the deployment within Fed-BioMed follows seamlessly the same general structure of general PyTorch training plans.

Following the MONAI example, this tutorial is based on the MedNIST dataset>

Image Registration¶

Image registration is the process of transforming and recalibrating different images into one coordinate system. It makes possible to compare several images captured with the same modality.

In this tutorial, we are using a UNet-like registration network ( https://arxiv.org/abs/1711.01666 ). Goal of the notebook is to train a model given moving images and fixed images (recalibrated images).

Creating MedNIST nodes¶

MedNIST provides an artificial 2d classification dataset created by gathering different medical imaging datasets from TCIA, the RSNA Bone Age Challenge, and the NIH Chest X-ray dataset. The dataset is kindly made available by Dr. Bradley J. Erickson M.D., Ph.D. (Department of Radiology, Mayo Clinic) under the Creative Commons CC BY-SA 4.0 license.

To proceed with the tutorial, we created an iid partitioning of the MedNIST dataset between 3 clients. Each client has 3000 image samples for each class. The training partitions are availables at the following link:

https://drive.google.com/file/d/1vLIcBdtdAhh6K-vrgCFy_0Y55dxOWZwf/view

The dataset owned by each client has structure:

└── client_*/

├── AbdomenCT/

└── BreastMRI/

└── CXR/

└── ChestCT/

└── Hand/

└── HeadCT/      

To create the federated dataset, we follow the standard procedure for node creation/population of Fed-BioMed.

we use the environment where Fed-BioMed node is installed

we create a first node by using the commands

fedbiomed node start

We then populate the node with the data of first client:

fedbiomed node dataset add

We select option 3 (images) to add MedNIST partition of client 1, by just picking the folder of client 1. We use mednist as tag to save the selected dataset. We can further check that the data has been added by executing fedbiomed node dataset list

Following the same procedure, we create the other two nodes with the datasets of client 2 and client 3 respectively.

Running Fed-BioMed Researcher¶

We are now ready to start the researcher by using the environment where Fed-BioMed researcher is installed, and open the Jupyter notebook with fedbiomed researcher start.

We can first query the network for the Mednist dataset. In this case, the nodes are sharing the respective partitions using the same tag mednist:

In [ ]:
Copied!
from fedbiomed.researcher.requests import Requests
from fedbiomed.researcher.config import config
req = Requests(config)
req.list(verbose=True)
from fedbiomed.researcher.requests import Requests from fedbiomed.researcher.config import config req = Requests(config) req.list(verbose=True)

Create an experiment to train a model on the data found¶

The code for network and data loader of the MONAI tutorial can now be deployed in Fed-BioMed. We first import the necessary modules from fedbiomed and monai libraries:

We can now define the training plan. Note that we use the standard TorchTrainingPlan natively provided in Fed-BioMed. We reuse the MedNISTDataset data loader defined in the original MONAI tutorial, which is returned by the method training_data, which also implements the data parsing from the nodes dataset_path. We should also properly define the training_routine, following the MONAI tutorial. According to the MONAI tutorial, the model is the GlobalNet and the loss is MSELoss.

In [ ]:
Copied!
import os
import numpy as np
import torch
import torch.nn as nn
from torch.nn.functional import mse_loss
from fedbiomed.common.training_plans import TorchTrainingPlan
from fedbiomed.common.logger import logger
from fedbiomed.common.data import DataManager
from torchvision import datasets, transforms
from typing import Union, List
#from torch.utils.data import Dataset, DataLoader
import monai
from monai.utils import set_determinism, first
from monai.transforms import (
    EnsureChannelFirstD,
    Compose,
    LoadImageD,
    RandRotateD,
    RandZoomD,
    ScaleIntensityRanged,
    EnsureTypeD,
)
from monai.data import DataLoader, Dataset, CacheDataset
from monai.config import print_config, USE_COMPILED
from monai.networks.nets import GlobalNet
from monai.networks.blocks import Warp
from monai.apps import MedNISTDataset


# Here we define the training plan to be used. 
class MyMonaiTrainingPlan(TorchTrainingPlan):
    def init_model(self, model_args = None):
        model_= GlobalNet(
            image_size=(64, 64),
            spatial_dims=2,
            in_channels=2,  # moving and fixed
            num_channel_initial=16,
            depth=3)

        if USE_COMPILED:
            model_.warp_layer = Warp(3, "border")
        else:
            model_.warp_layer = Warp("bilinear", "border")

        return model_

    def init_dependencies(self):
        return ["import numpy as np",
                "import monai",
                "from torch.nn.functional import mse_loss",
                "from monai.utils import set_determinism, first",
                "from monai.transforms import (EnsureChannelFirstD,Compose,LoadImageD,RandRotateD,RandZoomD,ScaleIntensityRanged,EnsureTypeD,)",
                "from monai.data import DataLoader, Dataset, CacheDataset",
                "from monai.networks.nets import GlobalNet",
                "from monai.config import USE_COMPILED",
                "from monai.networks.blocks import Warp",
                "from monai.apps import MedNISTDataset",]

    def init_optimizer(self, optimizer_args):
        lr = optimizer_args.get('lr', 1e-5)
        return torch.optim.Adam(self.model().parameters(), lr)
        
    def training_data(self):
        # Custom torch Dataloader for MedNIST data
        data_path = self.dataset_path
        # The following line is needed if client structure does not contain the "/MedNIST" folder
        MedNISTDataset.dataset_folder_name = ""
        train_data = MedNISTDataset(root_dir=data_path, section="training", download=False, transform=None)
        training_datadict = [
            {"fixed_hand": item["image"], "moving_hand": item["image"]}
            for item in train_data.data if item["label"] == 4  # label 4 is for xray hands
        ]
        train_transforms = Compose(
            [
                LoadImageD(keys=["fixed_hand", "moving_hand"]),
                EnsureChannelFirstD(keys=["fixed_hand", "moving_hand"]),
                ScaleIntensityRanged(keys=["fixed_hand", "moving_hand"],
                                     a_min=0., a_max=255., b_min=0.0, b_max=1.0, clip=True,),
                RandRotateD(keys=["moving_hand"], range_x=np.pi/4, prob=1.0, keep_size=True, mode="bicubic"),
                RandZoomD(keys=["moving_hand"], min_zoom=0.9, max_zoom=1.1,
                          monaiprob=1.0, mode="bicubic", align_corners=False),
                EnsureTypeD(keys=["fixed_hand", "moving_hand"]),
            ]
        )
        train_ds = CacheDataset(data=training_datadict[:1000], transform=train_transforms,
                                cache_rate=1.0, num_workers=0)
        dl = self.MednistDataLoader(train_ds)
        
        return DataManager(dl,  shuffle=True, num_workers=0)

    def training_step(self, moving, fixed):
        ddf = self.model().forward(torch.cat((moving, fixed), dim=1))
        pred_image = self.model().warp_layer(moving, ddf)
        loss = mse_loss(pred_image, fixed)
        return loss
    
    class MednistDataLoader(monai.data.Dataset):
        # Custom DataLoader that inherits from monai's Dataset object
        def __init__(self, dataset):
            self.dataset = dataset

        def __len__(self):
            return len(self.dataset)

        def __getitem__(self, idx):
            return (self.dataset[idx]["moving_hand"],
                    self.dataset[idx]["fixed_hand"])
import os import numpy as np import torch import torch.nn as nn from torch.nn.functional import mse_loss from fedbiomed.common.training_plans import TorchTrainingPlan from fedbiomed.common.logger import logger from fedbiomed.common.data import DataManager from torchvision import datasets, transforms from typing import Union, List #from torch.utils.data import Dataset, DataLoader import monai from monai.utils import set_determinism, first from monai.transforms import ( EnsureChannelFirstD, Compose, LoadImageD, RandRotateD, RandZoomD, ScaleIntensityRanged, EnsureTypeD, ) from monai.data import DataLoader, Dataset, CacheDataset from monai.config import print_config, USE_COMPILED from monai.networks.nets import GlobalNet from monai.networks.blocks import Warp from monai.apps import MedNISTDataset # Here we define the training plan to be used. class MyMonaiTrainingPlan(TorchTrainingPlan): def init_model(self, model_args = None): model_= GlobalNet( image_size=(64, 64), spatial_dims=2, in_channels=2, # moving and fixed num_channel_initial=16, depth=3) if USE_COMPILED: model_.warp_layer = Warp(3, "border") else: model_.warp_layer = Warp("bilinear", "border") return model_ def init_dependencies(self): return ["import numpy as np", "import monai", "from torch.nn.functional import mse_loss", "from monai.utils import set_determinism, first", "from monai.transforms import (EnsureChannelFirstD,Compose,LoadImageD,RandRotateD,RandZoomD,ScaleIntensityRanged,EnsureTypeD,)", "from monai.data import DataLoader, Dataset, CacheDataset", "from monai.networks.nets import GlobalNet", "from monai.config import USE_COMPILED", "from monai.networks.blocks import Warp", "from monai.apps import MedNISTDataset",] def init_optimizer(self, optimizer_args): lr = optimizer_args.get('lr', 1e-5) return torch.optim.Adam(self.model().parameters(), lr) def training_data(self): # Custom torch Dataloader for MedNIST data data_path = self.dataset_path # The following line is needed if client structure does not contain the "/MedNIST" folder MedNISTDataset.dataset_folder_name = "" train_data = MedNISTDataset(root_dir=data_path, section="training", download=False, transform=None) training_datadict = [ {"fixed_hand": item["image"], "moving_hand": item["image"]} for item in train_data.data if item["label"] == 4 # label 4 is for xray hands ] train_transforms = Compose( [ LoadImageD(keys=["fixed_hand", "moving_hand"]), EnsureChannelFirstD(keys=["fixed_hand", "moving_hand"]), ScaleIntensityRanged(keys=["fixed_hand", "moving_hand"], a_min=0., a_max=255., b_min=0.0, b_max=1.0, clip=True,), RandRotateD(keys=["moving_hand"], range_x=np.pi/4, prob=1.0, keep_size=True, mode="bicubic"), RandZoomD(keys=["moving_hand"], min_zoom=0.9, max_zoom=1.1, monaiprob=1.0, mode="bicubic", align_corners=False), EnsureTypeD(keys=["fixed_hand", "moving_hand"]), ] ) train_ds = CacheDataset(data=training_datadict[:1000], transform=train_transforms, cache_rate=1.0, num_workers=0) dl = self.MednistDataLoader(train_ds) return DataManager(dl, shuffle=True, num_workers=0) def training_step(self, moving, fixed): ddf = self.model().forward(torch.cat((moving, fixed), dim=1)) pred_image = self.model().warp_layer(moving, ddf) loss = mse_loss(pred_image, fixed) return loss class MednistDataLoader(monai.data.Dataset): # Custom DataLoader that inherits from monai's Dataset object def __init__(self, dataset): self.dataset = dataset def __len__(self): return len(self.dataset) def __getitem__(self, idx): return (self.dataset[idx]["moving_hand"], self.dataset[idx]["fixed_hand"])

We now set the model and training parameters. Note that in this case, no model argument is required.

In [ ]:
Copied!
model_args = {}

training_args = {
    'loader_args': { 'batch_size': 16, },
    'epochs': 3,
    'dry_run': False,  
    'batch_maxnum':250, # Fast pass for development : only use ( batch_maxnum * batch_size ) samples
    'optimizer_args': {
        'lr': 1e-5,
    },
    'use_gpu': True # Training on GPU
}
model_args = {} training_args = { 'loader_args': { 'batch_size': 16, }, 'epochs': 3, 'dry_run': False, 'batch_maxnum':250, # Fast pass for development : only use ( batch_maxnum * batch_size ) samples 'optimizer_args': { 'lr': 1e-5, }, 'use_gpu': True # Training on GPU }

The experiment can be now defined, by providing the mednist tag, and running the local training on nodes with training plan defined in training_plan_path, standard aggregator (FedAvg) and client_selection_strategy (all nodes used). Federated learning is going to be perfomed through 5 optimization rounds.

In [ ]:
Copied!
from fedbiomed.researcher.federated_workflows import Experiment
from fedbiomed.researcher.aggregators.fedavg import FedAverage

tags =  ['#MEDNIST']
rounds = 5

exp = Experiment(tags=tags,
                 model_args=model_args,
                 training_plan_class=MyMonaiTrainingPlan,
                 training_args=training_args,
                 round_limit=rounds,
                 aggregator=FedAverage(),
                 node_selection_strategy=None
                )
from fedbiomed.researcher.federated_workflows import Experiment from fedbiomed.researcher.aggregators.fedavg import FedAverage tags = ['#MEDNIST'] rounds = 5 exp = Experiment(tags=tags, model_args=model_args, training_plan_class=MyMonaiTrainingPlan, training_args=training_args, round_limit=rounds, aggregator=FedAverage(), node_selection_strategy=None )

Let's start the experiment.

By default, this function doesn't stop until all the round_limit rounds are done for all the clients

In [ ]:
Copied!
exp.run()
exp.run()

Save trained model to file

In [ ]:
Copied!
exp.training_plan().export_model('./trained_model')
exp.training_plan().export_model('./trained_model')

Testing¶

Once the federated model is obtained, it is possible to test it locally on an independent testing partition. The test dataset is available at this link:

https://drive.google.com/file/d/1YbwA0WitMoucoIa_Qao7IC1haPfDp-XD/

Following the Monai tutorial, in this section we will create a set of previously unseen pairs of moving vs fixed hands, and use the final federated model to predict the transformation between each pair.

In [ ]:
Copied!
!pip install matplotlib
!pip install gdown
!pip install matplotlib !pip install gdown
In [ ]:
Copied!
import torch
import numpy as np
import matplotlib.pyplot as plt


print_config()
set_determinism(42)
import torch import numpy as np import matplotlib.pyplot as plt print_config() set_determinism(42)

Download the testing dataset on the local temporary folder.

In [ ]:
Copied!
import gdown
import zipfile
import tempfile
import os

from fedbiomed.researcher.config import config

tmp_dir = tempfile.TemporaryDirectory(dir=config.vars['TMP_DIR']+os.sep)

resource = "https://drive.google.com/uc?id=1YbwA0WitMoucoIa_Qao7IC1haPfDp-XD"
base_dir = tmp_dir.name
test_file = os.path.join(base_dir, "MedNIST_testing.zip")

gdown.download(resource, test_file, quiet=False)

zf = zipfile.ZipFile(test_file)

for file in zf.infolist():
    zf.extract(file, base_dir)
    
data_dir = os.path.join(base_dir, "MedNIST_testing")
import gdown import zipfile import tempfile import os from fedbiomed.researcher.config import config tmp_dir = tempfile.TemporaryDirectory(dir=config.vars['TMP_DIR']+os.sep) resource = "https://drive.google.com/uc?id=1YbwA0WitMoucoIa_Qao7IC1haPfDp-XD" base_dir = tmp_dir.name test_file = os.path.join(base_dir, "MedNIST_testing.zip") gdown.download(resource, test_file, quiet=False) zf = zipfile.ZipFile(test_file) for file in zf.infolist(): zf.extract(file, base_dir) data_dir = os.path.join(base_dir, "MedNIST_testing")

We redefine our custom dataloader (defined previously in the TrainingPlan):

In [ ]:
Copied!
from monai.data import DataLoader, CacheDataset
import monai

class MednistDataLoader(monai.data.Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        return (self.dataset[idx]["moving_hand"],
                self.dataset[idx]["fixed_hand"])
from monai.data import DataLoader, CacheDataset import monai class MednistDataLoader(monai.data.Dataset): def __init__(self, dataset): self.dataset = dataset def __len__(self): return len(self.dataset) def __getitem__(self, idx): return (self.dataset[idx]["moving_hand"], self.dataset[idx]["fixed_hand"])

Create the testing data loader and pairs of moving vs fixed hands:

In [ ]:
Copied!
# Use a GPU if you have one + enough memory available
#
#use_cuda = torch.cuda.is_available()
#device = torch.device("cuda:0" if use_cuda else "cpu")
device = 'cpu'


# recreate model
model = GlobalNet(
    image_size=(64, 64),
    spatial_dims=2,
    in_channels=2,  # moving and fixed
    num_channel_initial=16,
    depth=3).to(device)

if USE_COMPILED:
    warp_layer = Warp(3, "border").to(device)
else:
    warp_layer = Warp("bilinear", "border").to(device)

MedNISTDataset.dataset_folder_name = ""
test_data = MedNISTDataset(root_dir=data_dir, section="test", download=False, transform=None)
testing_datadict = [
    {"fixed_hand": item["image"], "moving_hand": item["image"]}
    for item in test_data.data if item["label"] == 4  # label 4 is for xray hands
]
test_transforms = Compose(
            [
                LoadImageD(keys=["fixed_hand", "moving_hand"]),
                EnsureChannelFirstD(keys=["fixed_hand", "moving_hand"]),
                ScaleIntensityRanged(keys=["fixed_hand", "moving_hand"],
                                     a_min=0., a_max=255., b_min=0.0, b_max=1.0, clip=True,),
                RandRotateD(keys=["moving_hand"], range_x=np.pi/4, prob=1.0, keep_size=True, mode="bicubic"),
                RandZoomD(keys=["moving_hand"], min_zoom=0.9, max_zoom=1.1, prob=1.0, mode="bicubic", align_corners=False),
                EnsureTypeD(keys=["fixed_hand", "moving_hand"]),
            ]
        )
val_ds = CacheDataset(data=testing_datadict[:1000], transform=test_transforms,
                      cache_rate=1.0, num_workers=0)
val_dl = MednistDataLoader(val_ds)
val_loader = DataLoader(val_dl, batch_size=16, num_workers=0)
# Use a GPU if you have one + enough memory available # #use_cuda = torch.cuda.is_available() #device = torch.device("cuda:0" if use_cuda else "cpu") device = 'cpu' # recreate model model = GlobalNet( image_size=(64, 64), spatial_dims=2, in_channels=2, # moving and fixed num_channel_initial=16, depth=3).to(device) if USE_COMPILED: warp_layer = Warp(3, "border").to(device) else: warp_layer = Warp("bilinear", "border").to(device) MedNISTDataset.dataset_folder_name = "" test_data = MedNISTDataset(root_dir=data_dir, section="test", download=False, transform=None) testing_datadict = [ {"fixed_hand": item["image"], "moving_hand": item["image"]} for item in test_data.data if item["label"] == 4 # label 4 is for xray hands ] test_transforms = Compose( [ LoadImageD(keys=["fixed_hand", "moving_hand"]), EnsureChannelFirstD(keys=["fixed_hand", "moving_hand"]), ScaleIntensityRanged(keys=["fixed_hand", "moving_hand"], a_min=0., a_max=255., b_min=0.0, b_max=1.0, clip=True,), RandRotateD(keys=["moving_hand"], range_x=np.pi/4, prob=1.0, keep_size=True, mode="bicubic"), RandZoomD(keys=["moving_hand"], min_zoom=0.9, max_zoom=1.1, prob=1.0, mode="bicubic", align_corners=False), EnsureTypeD(keys=["fixed_hand", "moving_hand"]), ] ) val_ds = CacheDataset(data=testing_datadict[:1000], transform=test_transforms, cache_rate=1.0, num_workers=0) val_dl = MednistDataLoader(val_ds) val_loader = DataLoader(val_dl, batch_size=16, num_workers=0)

Create a model instance and assign to it the model parameters estimated at the last federated optimization round. Generate predictions of the transformation between pairs.

In [ ]:
Copied!
# extract federated model into PyTorch framework
model = exp.training_plan().model()
model.load_state_dict(exp.aggregated_params()[rounds - 1]['params'])

for moving, fixed in val_loader:
    ddf = model(torch.cat((moving, fixed), dim=1))
    pred_image = warp_layer(moving, ddf)
    break

fixed_image = fixed.detach().cpu().numpy()[:, 0]
moving_image = moving.detach().cpu().numpy()[:, 0]
pred_image = pred_image.detach().cpu().numpy()[:, 0]
# extract federated model into PyTorch framework model = exp.training_plan().model() model.load_state_dict(exp.aggregated_params()[rounds - 1]['params']) for moving, fixed in val_loader: ddf = model(torch.cat((moving, fixed), dim=1)) pred_image = warp_layer(moving, ddf) break fixed_image = fixed.detach().cpu().numpy()[:, 0] moving_image = moving.detach().cpu().numpy()[:, 0] pred_image = pred_image.detach().cpu().numpy()[:, 0]

We can finally print some example of predictions from the testing dataset.

In [ ]:
Copied!
%matplotlib inline
batch_size = 10
plt.subplots(batch_size, 4, figsize=(12, 20))
for b in range(batch_size):
    # moving image
    plt.subplot(batch_size, 4, b * 4 + 1)
    plt.axis('off')
    plt.title("moving image")
    plt.imshow(moving_image[b], cmap="gray")
    # fixed image
    plt.subplot(batch_size, 4, b * 4 + 2)
    plt.axis('off')
    plt.title("fixed image")
    plt.imshow(fixed_image[b], cmap="gray")
    # warped moving
    plt.subplot(batch_size, 4, b * 4 + 3)
    plt.axis('off')
    plt.title("predicted image")
    plt.imshow(pred_image[b], cmap="gray")
    
    #error
    plt.subplot(batch_size, 4, b * 4 + 4)
    plt.axis('off')
    plt.title("error between predicted \nand fixed image")
    plt.imshow(pred_image[b] - fixed_image[b], cmap="gray")
plt.axis('off')
plt.show()
%matplotlib inline batch_size = 10 plt.subplots(batch_size, 4, figsize=(12, 20)) for b in range(batch_size): # moving image plt.subplot(batch_size, 4, b * 4 + 1) plt.axis('off') plt.title("moving image") plt.imshow(moving_image[b], cmap="gray") # fixed image plt.subplot(batch_size, 4, b * 4 + 2) plt.axis('off') plt.title("fixed image") plt.imshow(fixed_image[b], cmap="gray") # warped moving plt.subplot(batch_size, 4, b * 4 + 3) plt.axis('off') plt.title("predicted image") plt.imshow(pred_image[b], cmap="gray") #error plt.subplot(batch_size, 4, b * 4 + 4) plt.axis('off') plt.title("error between predicted \nand fixed image") plt.imshow(pred_image[b] - fixed_image[b], cmap="gray") plt.axis('off') plt.show()
Download Notebook
  • Introduction
  • Image Registration
  • Creating MedNIST nodes
  • Running Fed-BioMed Researcher
  • Create an experiment to train a model on the data found
  • Testing
Address:

2004 Rte des Lucioles, 06902 Sophia Antipolis

E-mail:

fedbiomed _at_ inria _dot_ fr

Fed-BioMed © 2022