Node

Core code of the node component.

Attributes

Classes

Node

Node(dataset_manager, tp_security_manager, node_args=None)

Core code of the node component.

Defines the behaviour of the node, while communicating with the researcher through the Messaging, parsing messages from the researcher, etiher treating them instantly or queuing them, executing tasks requested by researcher stored in the queue.

Attributes:

Name Type Description
dataset_manager

DatasetManager object for managing the node's datasets.

tp_security_manager

TrainingPlanSecurityManager object managing the node's training plans.

node_args

Command line arguments for node.

Source code in fedbiomed/node/node.py
def __init__(self,
             dataset_manager: DatasetManager,
             tp_security_manager: TrainingPlanSecurityManager,
             node_args: Union[dict, None] = None):
    """Constructor of the class.

    Attributes:
        dataset_manager: `DatasetManager` object for managing the node's datasets.
        tp_security_manager: `TrainingPlanSecurityManager` object managing the node's training plans.
        node_args: Command line arguments for node.
    """

    self._tasks_queue = TasksQueue(environ['MESSAGES_QUEUE_DIR'], environ['TMP_DIR'])
    # TODO: extend for multiple researchers, currently expect only one
    res = environ["RESEARCHERS"][0]
    self._grpc_client = GrpcController(
        node_id=environ["ID"],
        researchers=[ResearcherCredentials(port=res['port'], host=res['ip'], certificate=res['certificate'])],
        on_message=self.on_message,
    )
    # When implementing multiple researchers, there will probably be one per researcher.
    self._pending_requests = EventWaitExchange(remove_delivered=True)
    self._controller_data = EventWaitExchange(remove_delivered=False)
    self._n2n_router = NodeToNodeRouter(self._grpc_client, self._pending_requests, self._controller_data)
    self.dataset_manager = dataset_manager
    self.tp_security_manager = tp_security_manager

    self.node_args = node_args

Attributes

dataset_manager instance-attribute
dataset_manager = dataset_manager
node_args instance-attribute
node_args = node_args
tp_security_manager instance-attribute
tp_security_manager = tp_security_manager

Functions

add_task
add_task(task)

Adds a task to the pending tasks queue.

Parameters:

Name Type Description Default
task dict

A Message object describing a training task

required
Source code in fedbiomed/node/node.py
def add_task(self, task: dict):
    """Adds a task to the pending tasks queue.

    Args:
        task: A `Message` object describing a training task
    """
    self._tasks_queue.add(task)
is_connected
is_connected()

Checks if node is ready for communication with researcher

Returns:

Type Description
bool

True if node is ready, False if node is not ready

Source code in fedbiomed/node/node.py
def is_connected(self) -> bool:
    """Checks if node is ready for communication with researcher

    Returns:
        True if node is ready, False if node is not ready
    """
    return self._grpc_client.is_connected()
on_message
on_message(msg, topic=None)

Handler to be used with Messaging class (ie the messager).

Called when a message arrives through the Messaging. It reads and triggers instructions received by node from Researcher, mainly: - ping requests, - train requests (then a new task will be added on node's task queue), - search requests (for searching data in node's database).

Parameters:

Name Type Description Default
msg dict

Incoming message from Researcher. Must contain key named command, describing the nature of the command (ping requests, train requests, or search requests). Should be formatted as a Message.

required
topic str

Messaging topic name, decision (specially on researcher) may be done regarding of the topic. Currently unused.

None
Source code in fedbiomed/node/node.py
def on_message(self, msg: dict, topic: str = None):
    """Handler to be used with `Messaging` class (ie the messager).

    Called when a  message arrives through the `Messaging`.
    It reads and triggers instructions received by node from Researcher,
    mainly:
    - ping requests,
    - train requests (then a new task will be added on node's task queue),
    - search requests (for searching data in node's database).

    Args:
        msg: Incoming message from Researcher.
            Must contain key named `command`, describing the nature
            of the command (ping requests, train requests,
            or search requests).
            Should be formatted as a `Message`.
        topic: Messaging topic name, decision (specially on researcher) may
            be done regarding of the topic. Currently unused.
    """
    # TODO: describe all exceptions defined in this method
    no_print = ["aggregator_args", "aux_vars", "params", "training_plan", "overlay"]
    msg_print = {key: value for key, value in msg.items() if key not in no_print}
    logger.debug('Message received: ' + str(msg_print))
    try:
        # get the request from the received message (from researcher)
        command = msg['command']
        request = NodeMessages.format_incoming_message(msg).get_dict()
        if command in ['train', 'secagg']:
            # add training task to queue
            self.add_task(request)
        elif command == 'secagg-delete':
            self._task_secagg_delete(NodeMessages.format_incoming_message(msg))
        elif command == 'overlay':
            self._n2n_router.submit(msg)
        elif command == 'ping':
            self._grpc_client.send(
                NodeMessages.format_outgoing_message(
                    {
                        'researcher_id': msg['researcher_id'],
                        'request_id': msg['request_id'],
                        'node_id': environ['NODE_ID'],
                        'success': True,
                        'command': 'pong'
                    }))
        elif command == 'search':
            # Look for databases matching the tags
            databases = self.dataset_manager.search_by_tags(msg['tags'])
            if len(databases) != 0:
                databases = self.dataset_manager.obfuscate_private_information(databases)
            self._grpc_client.send(NodeMessages.format_outgoing_message(
                {'request_id': msg['request_id'],
                 'success': True,
                 'command': 'search',
                 'node_id': environ['NODE_ID'],
                 'researcher_id': msg['researcher_id'],
                 'databases': databases,
                 'count': len(databases)}))

        elif command == 'list':
            # Get list of all datasets
            databases = self.dataset_manager.list_my_data(verbose=False)
            databases = self.dataset_manager.obfuscate_private_information(databases)
            self._grpc_client.send(NodeMessages.format_outgoing_message(
                {'success': True,
                 'request_id': msg['request_id'],
                 'command': 'list',
                 'node_id': environ['NODE_ID'],
                 'researcher_id': msg['researcher_id'],
                 'databases': databases,
                 'count': len(databases),
                 }))
        elif command == 'approval':
            # Ask for training plan approval
            reply = self.tp_security_manager.reply_training_plan_approval_request(request)
            self._grpc_client.send(reply)
        elif command == 'training-plan-status':
            # Check is training plan approved
            reply = self.tp_security_manager.reply_training_plan_status_request(request)
            self._grpc_client.send(reply)
        else:
            raise NotImplementedError('Command not found')

    except NotImplementedError:
        resid = msg.get('researcher_id', 'unknown_researcher_id')
        self.send_error(ErrorNumbers.FB301,
                        extra_msg=f"Command `{command}` is not implemented",
                        researcher_id=resid)
    except KeyError:
        # FIXME: this error could be raised for other missing keys (eg
        # researcher_id, ....)
        resid = msg.get('researcher_id', 'unknown_researcher_id')
        self.send_error(ErrorNumbers.FB301,
                        extra_msg="'command' property was not found",
                        researcher_id=resid)
    except FedbiomedMessageError:  # Message was not properly formatted
        resid = msg.get('researcher_id', 'unknown_researcher_id')
        self.send_error(ErrorNumbers.FB301,
                        extra_msg='Message was not properly formatted',
                        researcher_id=resid)
    except TypeError:  # Message was not serializable
        resid = msg.get('researcher_id', 'unknown_researcher_id')
        self.send_error(ErrorNumbers.FB301,
                        extra_msg='Message was not serializable',
                        researcher_id=resid)
parser_task_train
parser_task_train(msg)

Parses a given training task message to create a round instance

Parameters:

Name Type Description Default
msg TrainRequest

TrainRequest message object to parse

required

Returns:

Type Description
Union[Round, None]

a Round object for the training to perform, or None if no training

Source code in fedbiomed/node/node.py
def parser_task_train(self, msg: TrainRequest) -> Union[Round, None]:
    """Parses a given training task message to create a round instance

    Args:
        msg: `TrainRequest` message object to parse

    Returns:
        a `Round` object for the training to perform, or None if no training
    """
    round_ = None
    # msg becomes a TrainRequest object
    hist_monitor = HistoryMonitor(experiment_id=msg.get_param('experiment_id'),
                                  researcher_id=msg.get_param('researcher_id'),
                                  send=self._grpc_client.send)

    dataset_id = msg.get_param('dataset_id')
    data = self.dataset_manager.get_by_id(dataset_id)

    if data is None:
        logger.error('Did not found proper data in local datasets '
                     f'on node={environ["NODE_ID"]}')
        self._grpc_client.send(NodeMessages.format_outgoing_message(
            {'command': "error",
             'request_id': msg.request_id,
             'node_id': environ['NODE_ID'],
             'researcher_id': msg.get_param('researcher_id'),
             'errnum': ErrorNumbers.FB313.name,
             'extra_msg': "Did not found proper data in local datasets"}
        ))
    else:
        dlp_and_loading_block_metadata = None
        if 'dlp_id' in data:
            dlp_and_loading_block_metadata = self.dataset_manager.get_dlp_by_id(data['dlp_id'])

        round_ = Round(training_plan=msg.get_param('training_plan'),
                       training_plan_class=msg.get_param('training_plan_class'),
                       model_kwargs=msg.get_param('model_args') or {},
                       training_kwargs=msg.get_param('training_args') or {},
                       training=msg.get_param('training') or False,
                       dataset=data,
                       params=msg.get_param('params'),
                       experiment_id=msg.get_param('experiment_id'),
                       researcher_id=msg.get_param('researcher_id'),
                       history_monitor=hist_monitor,
                       aggregator_args=msg.get_param('aggregator_args') or None,
                       node_args=self.node_args,
                       round_number=msg.get_param('round'),
                       dlp_and_loading_block_metadata=dlp_and_loading_block_metadata,
                       aux_vars=msg.get_param('aux_vars'))

        # the round raises an error if it cannot initialize
        err_msg = round_.initialize_arguments(msg.get_param('state_id'))
        if err_msg is not None:
            self._grpc_client.send(
                NodeMessages.format_outgoing_message(
                    {   'command': 'error',
                        'node_id': environ['NODE_ID'],
                        'errnum': ErrorNumbers.FB300,
                        'researcher_id': msg.get_param('researcher_id'),
                        'extra_msg': "Could not initialize arguments."}
                ))

    return round_
reply
reply(msg)

Send reply to researcher

Parameters:

Name Type Description Default
msg dict
required
Source code in fedbiomed/node/node.py
def reply(self, msg: dict):
    """Send reply to researcher

    Args:
        msg:

    """

    try:
        reply = NodeMessages.format_outgoing_message(
            {'node_id': environ['ID'],
             **msg}
        )
    except FedbiomedMessageError as e:
        logger.error(f"{ErrorNumbers.FB601.value}: {e}")
        self.send_error(errnum=ErrorNumbers.FB601, extra_msg=f"{ErrorNumbers.FB601.value}: Can not reply "
                                                             f"due to incorrect message type {e}.")
    except Exception as e:
        logger.error(f"{ErrorNumbers.FB601.value} Unexpected error while creating node reply message {e}")
        self.send_error(errnum=ErrorNumbers.FB601, extra_msg=f"{ErrorNumbers.FB601.value}: "
                                                             f"Unexpected error occurred")

    else:
        self._grpc_client.send(reply)
send_error
send_error(errnum, extra_msg='', researcher_id='<unknown>', broadcast=False)

Sends an error message.

It is a wrapper of Messaging.send_error().

Parameters:

Name Type Description Default
errnum ErrorNumbers

Code of the error.

required
extra_msg str

Additional human readable error message.

''
researcher_id str

Destination researcher.

'<unknown>'
Source code in fedbiomed/node/node.py
def send_error(
        self,
        errnum: ErrorNumbers,
        extra_msg: str = "",
        researcher_id: str = "<unknown>",
        broadcast: bool = False
):
    """Sends an error message.

    It is a wrapper of `Messaging.send_error()`.

    Args:
        errnum: Code of the error.
        extra_msg: Additional human readable error message.
        researcher_id: Destination researcher.
    """

    #
    try:
        self._grpc_client.send(
            ErrorMessage(
                command='error',
                errnum=errnum.name,
                node_id=environ['NODE_ID'],
                extra_msg=extra_msg,
                researcher_id=researcher_id
            ),
            broadcast=broadcast
        )
    except Exception as e:
        # TODO: Need to keep message local, cannot send error
        logger.error(f"{ErrorNumbers.FB601.value}: Cannot send error message: {e}")
start_messaging
start_messaging(on_finish=None)

Calls the start method of messaging class.

Parameters:

Name Type Description Default
on_finish Optional[Callable]

Called when the tasks for handling all known researchers have finished. Callable has no argument.

None
Source code in fedbiomed/node/node.py
def start_messaging(self, on_finish: Optional[Callable] = None):
    """Calls the start method of messaging class.

    Args:
        on_finish: Called when the tasks for handling all known researchers have finished.
            Callable has no argument.
    """
    self._grpc_client.start(on_finish)
start_protocol
start_protocol()

Start the node to node router thread, for handling node to node message

Source code in fedbiomed/node/node.py
def start_protocol(self) -> None:
    """Start the node to node router thread, for handling node to node message"""
    self._n2n_router.start()
task_manager
task_manager()

Manages training tasks in the queue.

Source code in fedbiomed/node/node.py
def task_manager(self):
    """Manages training tasks in the queue.
    """

    while True:
        item = self._tasks_queue.get()
        # don't want to treat again in case of failure
        self._tasks_queue.task_done()

        logger.info(f"[TASKS QUEUE] Task received by task manager: Command: "
                    f"{item['command']} Researcher: {item['researcher_id']} "
                    f"Experiment: {item.get('experiment_id')}")

        try:

            item = NodeMessages.format_incoming_message(item)
            command = item.get_param('command')
        except Exception as e:
            # send an error message back to network if something wrong occured
            self._grpc_client.send(
                NodeMessages.format_outgoing_message(
                    {
                        'command': 'error',
                        'extra_msg': str(e),
                        'node_id': environ['NODE_ID'],
                        'researcher_id': 'NOT_SET',
                        'errnum': ErrorNumbers.FB300.name
                    }
                )
            )
        else:
            if command == 'train':
                try:
                    round = self.parser_task_train(item)

                    # once task is out of queue, initiate training rounds
                    if round is not None:
                        # Runs model training and send message using callback
                        msg = round.run_model_training(
                            secagg_arguments= item.get_param('secagg_arguments'),
                        )
                        msg.request_id = item.request_id
                        self._grpc_client.send(msg)

                        # clean out `Round` objects (eg temporary files)
                        # don't wait for garbage collection
                        del round
                except Exception as e:
                    # send an error message back to network if something
                    # wrong occured
                    self._grpc_client.send(
                        NodeMessages.format_outgoing_message(
                            {
                                'request_id': item.request_id,
                                'command': 'error',
                                'extra_msg': 'Round error: ' + str(e),
                                'node_id': environ['NODE_ID'],
                                'researcher_id': item.get_param('researcher_id'),
                                'errnum': ErrorNumbers.FB300.name
                            }
                        )
                    )
                    logger.debug(f"{ErrorNumbers.FB300.value}: {e}")
            elif command == 'secagg':
                self._task_secagg(item)
            else:
                errmess = f'{ErrorNumbers.FB319.value}: "{command}"'
                logger.error(errmess)
                self.send_error(errnum=ErrorNumbers.FB319, extra_msg=errmess)